Performance of immobilized Zymomonas mobilis 31821 (pZB5) on actual hydrolysates produced by Arkenol technology.

نویسندگان

  • Tomiaki Yamada
  • Michael A Fatigati
  • Min Zhang
چکیده

By applying the Arkenol process using highly concentrated sulfuric acid, various biomass feedstocks, including cedar tree, rice straw, newspaper, and bagasse, were successfully processed and converted into glucose and xylose for fermentation usage in a flash fermentation reactor in which the performance of National Renewable Energy Laboratory's patented rec-Zymomonas mobilis 31821 (pZB5) after immobilization was investigated. The immobilization medium is a photocrosslinked resin made from polyethylene glycols or polypropylene glycols. Recombinant or rec-Z. mobilis used in the study has been shown to efficiently ferment glucose and xylose at a relatively high concentration (12-15%), that is a typical hydrolysate produced from cellulosic feedstocks. The application of immobilized rec-Z. mobilis and flash fermentation technology, together with concentrated acid technology producing a high concentration sugar solution, promises to speed the development of the cellulose-to-ethanol industry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic and nuclear magnetic resonance studies of xylose metabolism by recombinant Zymomonas mobilis ZM4(pZB5).

The specific rates of growth, substrate utilization, and ethanol production as well as yields of biomass and ethanol production on xylose for the recombinant Zymomonas mobilis ZM4(pZB5) were shown to be much less than those on glucose or glucose-xylose mixtures. Typical fermentations with ZM4(pZB5) growing on glucose-xylose mixtures followed two-phase growth kinetics with the initial uptakes of...

متن کامل

Alcohol Production from Cassava Starch by Co-immobilized Zymomonas mobilis and Immobilized Glucoamylase

Simultaneous saccharification and fermentation of dextrin£zed cassava starch to glucose and alcohol, respectively, were carried out by co-immobilized Zymomonas mobilis and immobilz'zed glucoamylase (IG). Calcium alginate-entrapped cells and IG (4 : 1 ratio) gave an alcohol productivity of 0.30 glgww cellslh in a batchfermentation process. For continuous fermentation, 54.3 gil alcohol was produc...

متن کامل

Controlling microbial contamination during hydrolysis of AFEX-pretreated corn stover and switchgrass: effects on hydrolysate composition, microbial response and fermentation

BACKGROUND Microbial conversion of lignocellulosic feedstocks into biofuels remains an attractive means to produce sustainable energy. It is essential to produce lignocellulosic hydrolysates in a consistent manner in order to study microbial performance in different feedstock hydrolysates. Because of the potential to introduce microbial contamination from the untreated biomass or at various poi...

متن کامل

“Fish-in-Net”, a Novel Method for Cell Immobilization of Zymomonas mobilis

BACKGROUND Inorganic mesoporous materials exhibit good biocompatibility and hydrothermal stability for cell immobilization. However, it is difficult to encapsulate living cells under mild conditions, and new strategies for cell immobilization are needed. We designed a "fish-in-net" approach for encapsulation of enzymes in ordered mesoporous silica under mild conditions. The main objective of th...

متن کامل

Evaluation of Ethanol Production from Tannin-Reduced Carob Pod Extracts by Zymamonas Mobilis

Regarding some reported antimicrobial properties of tannins; Zymomonas mobilis was used to obtain ethanol from tannin-reduced carob pod extract (TR-CPE). Culture of 50 mL volume containing 7.5 g sugar at pH 5.5 and 0.03 g bacterial inoculums with shaking at 80 rpm was used. Using response surface methodology (RSM), the maximum ethanol concentration of 5.34 % w/v (higher than that reported earli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied biochemistry and biotechnology

دوره 98-100  شماره 

صفحات  -

تاریخ انتشار 2002